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This paper explores the use of low-dimensional parametric representations of neutron-star equations of
state that include discontinuities caused by phase transitions. The accuracies of optimal piecewise-analytic
and spectral representations are evaluated for equations of state having first- or second-order phase
transitions with a wide range of discontinuity sizes. These results suggest that the piecewise-analytic
representations of these nonsmooth equations of state are convergent, while the spectral representations are
not. Nevertheless, the lower-order (2 ≤ Nparms ≤ 7) spectral representations are found to be more accurate
than the piecewise-analytic representations with the same number of parameters.
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I. INTRODUCTION

The equation of state of the material in the cores of
neutron stars is not well known at this time. The density of
this material far exceeds the limits of current laboratory
experiments, and there is at present no universally accepted
theoretical model of this material. Astrophysical observa-
tions of neutron stars can in principle be used to determine
the neutron-star equation of state [1]. However, the quality
and quantity of those observations are presently quite
limited.
Parametric representations of the neutron-star equation

of state have been introduced as a way to analyze the results
of the relevant astrophysical observations. The parameters
in these equations of state are adjusted to provide best-fit
models of the observational data, thus producing approxi-
mate representations of the physical equation of state. Since
the quality and quantity of the relevant astrophysical
observations are still quite limited, parametric representa-
tions that provide good accuracy using only a small number
of parameters are needed.
Two types of parametric representations of the equation

of state have been introduced for this purpose. Piecewise-
analytic representations, first introduced in Ref. [2], divide
the range of densities into discrete ranges with parameter-
dependent analytic expressions representing the equation of
state within each range. Another type of parametric
representation, first introduced in Ref. [3], is constructed
from a generating function expressed as a linear combi-
nation of fixed basis functions, e.g. polynomial or trigo-
nometric functions. The parameters in these “spectral”
representations are the coefficients that multiply the basis
functions in the sum that determines the generating
function for the equation of state.
The accuracies of both the piecewise-analytic and the

spectral representations have been evaluated using a diverse

collection of theoretical neutron-star equation of state
models [2–5]. Those tests showed that both types of
representation are convergent in the sense that their
accuracies increased as the number of parameters in the
representation increased. Those tests also showed that
reasonably good accuracies (at the few percentage level)
could be achieved with representations having a fairly small
number of parameters. Consequently both the piecewise-
analytic and the spectral representations have been widely
used to analyze the presently available observational data,
with Refs. [2,3] having received hundreds of citations in the
literature.
Previous tests of the accuracy of these parametric

representations used a collection of mostly discontinuity-
free theoretical equation of state models. The physical
neutron-star equation of state may (or may not) include
discontinuities caused by phase transitions. The purpose of
this paper is to systematically evaluate the accuracy of the
piecewise-analytic and the spectral representations when
used to represent nonsmooth neutron-star equations of state
with phase transitions. A sequence of exemplar equations
of state is constructed in Appendix A for this study with
phase transitions having a range of sizes. Those exemplar
equations of state are then used to test the accuracy of both
the piecewise-analytic and the spectral representations.
The methods used in this study to construct optimal

parametric equation of state fits are described in Sec. II.
These methods are then used to construct optimal fits to
each exemplar equation of state using both the piecewise-
analytic and the spectral representations. The accuracies of
the resulting optimal fits are evaluated using the L2 norm
of the difference between the exemplar equation of state
and its parametric representation. These results illustrate
how the accuracies of the parametric representations
depend on the type of representation (piecewise analytic
or spectral), the size and type (first- or second-order) of
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the phase-transition discontinuities, and the orders of the
parametric representations.
Section III discusses the implications of the results found

here. If and when more accuracy is needed to model future
improvements in the quality and quantity of observational
data, a split domain method for constructing more accurate
representations of nonsmooth equations of state with phase
transitions is proposed.

II. OPTIMAL PARAMETRIC FITS

This section describes the method used in this study to
test the accuracy of optimal piecewise-analytic and spectral
representations of neutron-star equations of state with
phase transitions. The exemplar equations of state with
phase transitions used to perform these tests were con-
structed from the relatively smooth GM1L equation of
state, which is based on a mean-field representation of the
interactions between nucleons [6]. Discontinuities repre-
senting first- or second-order phase transitions were
inserted into a tabulated representation of GM1L at a point
several times nuclear density where the energy density has
the value ϵT ¼ 8 × 1014 g=cm3. These discontinuities were
inserted with a range of sizes specified by a parameter k,
which determines the size of the discontinuity as a fraction
of the maximum physically relevant discontinuity (see
Appendix A). The family of exemplar equations of state
used in this study ranges from the original smooth GM1L
equation of state with k ¼ 0 to equations of state with the

maximum discontinuity of each type with k ¼ 100. Details
of the construction of these exemplar equations of state are
given in Appendix A. Figures 1 and 2 illustrate members of
these exemplar equation of state families, with first- and
second-order phase transitions respectively, in the neigh-
borhood of the phase transition point.
The particular parametric equation of state representa-

tions used in this study [3,5] are described in Appendix B.
These parametric representations are causal in the sense that
the sound speeds are less than the speed of light for every
choice of the parameters. The representations used in this
study express the energy density ϵðh; υaÞ and the pressure
pðh; υaÞ as functions of the enthalpy h of the fluid and a set
of parameters υa for 1 ≤ a ≤ Nparms. This type of repre-
sentation ismost useful when using the enthalpy-based form
of the relativistic stellar structure equations [1]. This form of
the equations allows numerical determinations of themasses
and radii more accurately and more efficiently than the
standard pressure-based Oppenheimer-Volkoff [7] form.
The families of exemplar equations of state with phase
transitions described in Appendix A were produced as
enthalpy-based tables, fϵi; pi; hig for 0 ≤ i ≤ Ntable, to
facilitate comparisons with the enthalpy-based parametric
representations.
The next step is to find the values of the parameters υa in

the equation of state, ϵðh; υaÞ, that best approximates one of
the exemplar equations of state. The optimal parameter
values υa are found in this study by minimizing the function
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FIG. 1. Several exemplar equations of state with first-order
phase transitions are illustrated in a neighborhood of the phase
transition point. The curves shown here include the original
GM1L equation of state, k ¼ 0, and several equations of state
with larger density offsets, 0 < k ≤ 100. The k ¼ 100 curve has
the maximum density offset allowed in stable (and therefore
observable) neutron stars.
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FIG. 2. Several exemplar equations of state with second-order
phase transitions are illustrated in a neighborhood of the phase
transition point. The curves shown here include several equations
of state with density derivative offsets in the range 0 ≤ k ≤ 100.
The k ¼ 0 curve represents the original GM1L equation of state,
and the k ¼ 100 curve has the largest physically possible fluid-
velocity discontinuity, with the fluid velocity equal to the speed
of light on the high-density portion of this curve.
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χðυaÞ that measures the average difference between the
tabulated values of the exemplar equation of state, ϵiðhiÞ,
and the corresponding values from the parametric equation
of state, ϵðhi; υaÞ:

χ2ðυaÞ ¼
1

Ntable

XNtable

i¼0

�
log

�
ϵðhi; υaÞ
ϵiðhiÞ

��
2

: ð1Þ

The error function χ2ðυaÞ is non-negative, and therefore has
a minimum for some υa. The minimization of χðυaÞ is
carried out numerically in this study using an algorithm
based on the Levenberg-Marquardt method [8]. The equa-
tion of state, ϵðh; υaÞ and pðh; υaÞ, produced by this
minimization process is the optimal parametric fit to this
equation of state.
Model equations of state created with different numbers

of parameters, Nparms, produce different error minima,
χ2ðυa; NparmsÞ. Those with larger Nparms generally produce
smaller errors, and therefore provide better approximations
to the original tabulated equation of state. The minimum
values of χðNparmsÞ for the causal piecewise-analytic
representations of the exemplar equations of state with
first-order phase transitions are shown as functions of
Nparms in Fig. 3 for a range of discontinuity sizes,
0 ≤ k ≤ 100. Figure 4 shows the analogous results for
the exemplar equations of state with second-order phase
transitions. The results for the causal spectral representa-
tions of the exemplar equations of state with first- or
second-order phase transitions are shown in Figs. 5 and 6
respectively.

III. DISCUSSION

The results in Figs. 3 and 4 show that the piecewise-
analytic parametric fits to the exemplar equations of state

are convergent, in the sense that the average errors
χðNparmsÞ decrease monotonically as the number of param-
eters Nparms increases. These results also show that the
accuracies of the piecewise-analytic representations do not
depend strongly on the size of the discontinuities. The
piecewise-analytic representations therefore provide a
robust way to represent equations of state with disconti-
nuities from first- or second-order phase transitions.
The results in Figs. 5 and 6 for the spectral representations

are more nuanced. The modeling errors χðNparmsÞ decrease
rapidly as Nparms increases to Nparms ¼ 8 for equations of
state with small discontinuities. However for larger values,
Nparms > 8, and for equations of state with larger disconti-
nuities, χðNparmsÞ becomes more or less constant. These
results show that the particular spectral representation used
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FIG. 3. Average errors χðNparmsÞ for the piecewise-analytic fits
as a function of Nparms for a family of equations of state with first-
order phase transitions of various sizes, 0 ≤ k ≤ 100.

2 4 6 8 10
N

parms

10
-2

10
-1

�
k = 0
k = 1
k = 2
k = 5
k = 10
k = 20
k = 40
k = 60
k = 80
k = 100

FIG. 4. Average errors χðNparmsÞ for the piecewise-analytic fits
as a function of Nparms for a family of equations of state with
second-order phase transitions of various sizes, 0 ≤ k ≤ 100.
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FIG. 5. Average errors χ for the optimal spectral fits as a
function of Nparms for a sequence of equations of state with first-
order phase transitions of various sizes, 0 ≤ k ≤ 100.
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in this study does not provide convergent representations of
equations of state with discontinuities caused by phase
transitions.
Nevertheless, the modeling errors χðNparmsÞ for the low-

order, 2 ≤ Nparms ≤ 7, spectral representations are smaller
than those of the corresponding piecewise-analytic repre-
sentations for every exemplar equation of state included
in this study. Figures 7 and 8 illustrate the relative
accuracies of the two types of parametric representation
for the equations of state with first- or second-order phase
transitions respectively. While these spectral representa-
tions are not convergent, these results show that they are
still the most accurate choice when using low-order
parametric fits. The errors in the Nparms ¼ 3 spectral fits,
for example, are fairly small, 0.012 ≤ χ ≤ 0.072, for all
the phase transitions studied here. Until the quality and
quantity of observational data are improved to allow more
accurate determinations of the equation of state, the low-
order spectral representations are likely to be the best
choice.
It is not clear why the spectral representations fail to

converge for equations of states with discontinuities. The
basis functions used in the particular spectral representation
used here are simple powers of log ðh=h0Þ; see Eq. (B14).
This spectral expansion is therefore similar in form to a
Taylor expansion of the velocity function. The radius of
convergence of the Taylor expansion of this function would
not extend into the high-density region beyond the dis-
continuity caused by a phase transition. It is possible that
the spectral expansions using these power-law spectral
basis functions fail to converge for a similar reason. If this
is the problem, then changing basis functions to Chebyshev
polynomials or Fourier basis functions whose domains
span the phase transition point would likely improve the
convergence properties of the spectral representations.

Another possibility is that the algorithm used in this study
to find the minimum of χ2 is less than optimal, perhaps
leading to the jumps seen in χðNparmsÞ at Nparms ¼ 3

and Nparms ¼ 8.
In cases where a strong first-order phase transition is

present, better accuracy and numerical convergence could
also be achieved by dividing the equation of state into a
low-density domain with pressures and energy densities
below the phase transition point, and a second high-density
domain with pressures and densities above that point. In the
low-density domain, h0 ≤ h ≤ hT , the spectral expansion
defined in Eqs. (B4)–(B13) could be used. In the high-
density domain a separate but similar spectral expansion
could be used:
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FIG. 6. Average errors χ for the optimal spectral fits as a
function of Nparms for a sequence of equations of state with
second-order phase transitions of various sizes, 0 ≤ k ≤ 100.
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FIG. 7. Comparing modeling errors, χðNparmsÞ, for the optimal
causal piecewise-analytic and the causal spectral fits to the
exemplar neutron-star equations of state with first-order phase
transitions.

2 4 6 8 10
N

parms

10
-3

10
-2

10
-1

�

Piecewise Analytic: k = 0
Piecewise Analytic: k = 100
Spectral: k = 100

FIG. 8. Comparing modeling errors, χðNparmsÞ, for the optimal
causal piecewise-analytic and the causal spectral fits to the
exemplar neutron-star equations of state with second-order phase
transitions.
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pðhÞ ¼ pT þ ðϵ̄Tc2 þ pTÞ
Z

h

hT

μ̄ðh0Þdh0; ð2Þ

ϵðhÞ ¼ −
pðhÞ
c2

þ
�
ϵ̄T þ pT

c2

�
μ̄ðhÞ; ð3Þ

where pT ¼ pðhTÞ and ϵ̄T represent the point on the
equation of state curve just above the phase transition
point. The quantity μ̄ðhÞ used in these expressions is
given by

μ̄ðhÞ ¼ exp

�Z
h

hT

½2þ ϒ̄ðh0Þ�dh0
�
; ð4Þ

while the velocity function ϒ̄ðhÞ used in the high-density
domain is given by

ϒ̄ðh; υaÞ ¼ exp

8<
:

XN̄parms

a¼1

ῡaΦaðhÞ
9=
;; ð5Þ

for some suitable choice of basis functions ΦaðhÞ.
The single-domain spectral expansions considered in this

study are defined by the values of the Nparms spectral
parameters υa. The two-domain spectral expansions are
defined by the values of the original Nparms spectral param-
eters υa, plus the N̄parms spectral parameters ῡa, plus two
additional parameters hT and ϵ̄T that determine where the
phase transition is located and the size of the energy-density
discontinuity at that point. Thus the number of parameters
needed to specify the equation of state using this two-domain
approach grows from Nparms to Nparms þ N̄parms þ 2. The
cost of going to a two-domain spectral representation could
only be justified if sufficient accuracy could not be achieved
using a single-domain representation with the same total
number of parameters.
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APPENDIX A: EXEMPLAR EQUATIONS
OF STATE

The exemplar equations of state used in this study were
constructed by introducing discontinuities into the rela-
tively smooth GM1L equation of state, which is based on a
mean-field representation of the interactions between
nucleons [6]. The basic representation of GM1L used here
is a table of energy density and pressure points: fϵi; pig for

0 ≤ i ≤ Ntable. The primary goal of this study is to test the
accuracy of parametric representations of equations of state
with phase transitions in the nuclear-density range.
Consequently only the high-density portion of the GM1L
equation of state table is used here, beginning at the
table entry, fϵ0; p0g, where ϵ0 ¼ 5.08587 × 1013 g=cm3

and p0 ¼ 1.20788 × 1032 erg=cm3.
This study uses enthalpy-based representations of the

equation of state, so the basic pressure-based GM1L table,
fϵi; pig, must be converted to an enthalpy-based table:
fϵi; pi; hig. The enthalpy of a relativistic fluid is defined by

hðpÞ ¼ h0 þ
Z

p0

p0

dp0

ϵðp0Þc2 þ p0 : ðA1Þ

In order to evaluate this integral for the tabulated GM1L
equation of state, an interpolation formula must be used to
determine the values of ϵðpÞ between table entries. The
commonly used pseudopolytropic interpolation,

p ¼ pi

�
ϵ

ϵi

�
Γi

; ðA2Þ

is used here to define this equation of state for energy
densities, ϵi ≤ ϵ < ϵiþ1, in the intervals between table
entries. The constants Γi in this expression are defined by

Γi ¼
logðpiþ1=piÞ
logðϵiþ1=ϵiÞ

: ðA3Þ

The low-density value of h0 ¼ pðh0Þ used in this study is
determined by evaluating the enthalpy integral in the low-
density range using one of the standard lower-density
neutron-star equations of state [9], with the result
h0 ≈ 1.74067 × 10−2. At higher densities the enthalpy
can be determined by integrating Eq. (A1) between table
entries pi and piþ1 using Eq. (A2). These integrals can be
done analytically resulting in a recursion relation for the
hiþ1 table entries [10]:

hiþ1 ¼ hi þ
Γi

Γi − 1
log

�
ϵiðϵiþ1c2 þ piþ1Þ
ϵiþ1ðϵic2 þ piÞ

�
: ðA4Þ

Discontinuities are inserted into GM1L for this study at a
point several times nuclear density where the energy
density has the value ϵT ¼ 8 × 1014 g=cm3. The particular
equations of state with discontinuities representing first- or
second-order phase transitions are described in Secs. A 1
and A 2 respectively. These exemplar equations of state
have discontinuities with a range of sizes from zero to the
largest physically relevant phase transition of each type.

1. First-order phase transitions

An equation of state ϵ ¼ ϵðpÞ is said to have a first-order
phase transition at p ¼ pT if ϵðpÞ is discontinuous at that
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point. Exemplar equations of state with first-order phase
transitions are constructed here by modifying the GM1L
equation of state at densities above ϵT . For this study the
transition density ϵT is chosen to be several times nuclear
density at the point ϵT ¼ 8 × 1014 g=cm3.
To ensure the tabulated representations of the exemplar

equations of state adequately represent the sharp transitions
at the phase transition, points are added to the table entries
at the points ϵ�T ¼ ð1� 10−6ÞϵT, just above and below the
phase transition. The corresponding pressure points needed
to complete the table entries are given by Eq. (A2):
p�
T ¼ piðϵ�T =ϵiÞΓi , where ϵi < ϵ�T < ϵiþ1. Once the

GM1L equation of state table has been updated with these
two additional phase-transition bracketing points, density
offsets δϵT are added to all the table entries with densities
above ϵT . The result is a tabulated model equation of state
with a first-order phase transition.
The neutron-star mass-radius curves produced by equa-

tions of state with first-order phase transitions show that
stars with central densities above ϵT are unstable whenever
the density discontinuity δϵT exceeds a certain maximum,
maxðδϵTÞ [11]. The masses of these stars achieve a
maximum at the point where the central density equals
ϵT . Stars with larger central densities are subject to a
gravitational instability predicted by general relativity
theory. The family of stable neutron stars therefore termi-
nates at this point. In some cases there may be an additional
higher density family of stable “hyperon” or perhaps
“quark” stars.1 Neutron stars with central pressures in
the unstable region above ϵT can never be observed, so
equations of state with density offsets above maxðδϵTÞ will
not be considered in this study. The approximate value of
this maximum density offset is given by [11]

maxðδϵTÞ ¼
1

3

�
ϵT þ 3

pT

c2

�
; ðA5Þ

where pT ¼ piðϵT=ϵiÞΓi , and ϵi < ϵT < ϵiþ1. The maxi-
mum density offset, maxðδϵTÞ, is fairly large for the model
first-order phase transitions constructed here: maxðδϵTÞ=
ϵT ≈ 0.504634.2

A family of exemplar equations of state with first-order
phase transitions have been constructed for this study
with density offsets δϵT having sizes in the range
0 ≤ δϵT ≤ maxðδϵTÞ. The density offsets used in these
models are given by

δϵT ¼ σk maxðδϵTÞ; ðA6Þ

where the size of the offsets is determined by

σk ¼
k

100
; ðA7Þ

for 0 ≤ k ≤ 100. The density offset for each exemplar
equation of state is added to all the table entries that exceed
the transition density ϵT. Figure 1 illustrates some of these
exemplar equations of state in a neighborhood of the phase
transition point. Figure 9 illustrates the mass-radius curves
generated from these exemplar equations of state with first-
order phase transitions.

2. Second-order phase transitions

Second-order phase transitions are points on the equation
of state curve ϵ ¼ ϵðpÞwhere ϵðpÞ is continuous but dϵ=dp
is discontinuous. In this study the derivatives of the GM1L
equation of state are modified at and above the phase
transition density ϵT to create a discontinuity that simulates
a second-order phase transition. To do this most efficiently,
the basic GM1L equation of state table is modified by
inserting an additional entry at the point fϵT; pTg. With this
addition the second-order phase-transition discontinuity in
dϵ=dp occurs at one of the tabulated data points.
The derivative of the equation of state, dϵ=dp, is related

to the speed of sound v in a barotropic fluid by

10 11 12 13
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1

1.5
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2.5

M
/M
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FIG. 9. Examples of mass-radius curves for equations of state
with first-order phase transitions. The k ¼ 0 curve is based on the
unmodified GM1L equation of state, while the k ¼ 100 curve
corresponds to the equation of state with the maximum density
discontinuity defined in Eq. (A5). The k ¼ 150 curve illustrates
an equation of state with a larger density discontinuity which
leads to unstable stars beyond the fϵT; pTg phase transition point.
This k ¼ 150 curve also has a disconnected branch of stable
relativistic stars at higher densities.

1If the mass-radius curve of these stars has a second inflection
point beyond fϵT; pTg where the mass has a minimum and the
radius is decreasing, then stability would be restored, and a higher
density branch of relativistic stars could exist.

2The maximum density offset derived by an analytical analysis
in Ref. [11] is 1.5 times the value given in Eq. (A5). Numerical
studies, however, show that the effective maximum offset is close
to the value given in Eq. (A5).
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v ¼ ðdϵ=dpÞ−1=2. Any modifications of dϵ=dp above the
phase transition point must therefore be done in a way that
respects causality. A convenient tool for monitoring the
causality of sound waves in fluids is the dimensionless
velocity function ϒ defined by [4]

ϒ ¼ c2
dϵ
dp

− 1 ¼ c2 − v2

v2
: ðA8Þ

The propagation of sound waves is causal if and only if
ϒ ≥ 0. The velocity function ϒ is determined from the
basic tabulated GM1L equation of state by evaluating
dϵ=dp using the interpolation formula in Eq. (A2) at each
point in the table. The result is given by

ϒi ¼
ϵic2

piΓi
− 1: ðA9Þ

For causal equations of state ϒ ≥ 0, with ϒ ¼ 0 represent-
ing the extreme case of a fluid with sound speed equal to
the speed of light, v2 ¼ c2.
Discontinuities in the slope of the exemplar equations of

state were introduced for this study by modifying ϒ for
densities above the phase transition density, ϵ ≥ ϵT, while
leaving it unchanged for lower densities. In particular the
sound speed was increased by reducingϒ by multiplying it
by the factor 1 − σk in this high-density region, using the σk
defined in Eq. (A7). Thusϒ is replaced in this high-density
region by ϒ̃ defined by

ϒ̃ ¼ ð1 − σkÞϒ: ðA10Þ
The maximum physically relevant slope discontinuity at

the phase transition point is achieved by setting the sound
speed to the speed of light, v2 ¼ c2 at that point, i.e. by
setting ϒ̃ ¼ 0 there. A family of exemplar equations of
state models were constructed for this study that range from
the original undistorted GM1L equation of state for k ¼ 0,
to the extreme equation of state with ϒ̃ ¼ 0 above the
transition density for k ¼ 100.
Given ϒ̃i evaluated at the points of the basic GM1L

equation of state table, the modified values of ϵi above the
phase transition point, ϵi > ϵT , can be determined by the
recursion relation

ϵiþ1 ¼ ϵi exp
�
ð1þ ϒ̃iÞ

pi

ϵic2
log

�
piþ1

pi

��
: ðA11Þ

This expression follows by solving Eq. (A9) for ϵiþ1 which
contributes to the definition of Γi. The pressure points pi in
the equation of state table are not modified. Figure 2
illustrates a few of these exemplar equations of state with
larger density-derivative discontinuities in a neighborhood of
the second-order phase transition point. Figure 10 illustrates
the mass-radius curves generated from these exemplar
equations of state with second-order phase transitions.

APPENDIX B: CAUSAL PARAMETRIC
REPRESENTATIONS

This study uses enthalpy-based representations of the
neutron-star equation of state. These representations deter-
mine the energy density ϵðh; υaÞ and pressure pðh; υaÞ as
functions of the enthalpy h and a collection of Nparms

parameters υa for 1 ≤ a ≤ Nparms. To be useful tools for
representing the physical neutron-star equation of state,
these representations must be faithful, and they must be
causal. Faithful representations have the property that every
choice of parameters, υa, represents a possible physical
equation of state. Conversely every physical equation of
state can be represented by some choice, including perhaps
an infinite sequence, of parameters [3]. Faithful parametric
representations must be convergent as the number of
parameters is increased. Causal representations have the
property that every choice of parameters generates an
equation of state with sound speeds less than or equal to
the speed of light [4].
An equation of state has causal sound speeds if and only

if the velocity function ϒ, defined in Eq. (A8), is non-
negative: ϒ ≥ 0. This velocity function can be used as a
generating function that determines the full equation of
state, so it is a very useful tool for constructing causal
parametric representations. The velocity function can be
written as a function of the enthalpy:

ϒðhÞ¼ c2
dϵ
dp

−1¼ c2
dϵ
dh

½ϵðhÞc2þpðhÞ�−1−1: ðB1Þ
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FIG. 10. Examples of mass-radius curves for equations of state
with second-order phase transitions. The k ¼ 0 curve is based on
the unmodified GM1L equation of state, while the k ¼ 100 curve
is based on the maximal case where the sound speed changes
discontinuously to the speed of light above the phase transition.
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Given a velocity function, ϒðhÞ, the full equation of state
can be reconstructed by solving the following ordinary
differential equations for ϵðhÞ and pðhÞ:

dp
dh

¼ ϵc2 þ p: ðB2Þ

dϵ
dh

¼
�
ϵþ p

c2

�
½ϒðhÞ þ 1�: ðB3Þ

The first, Eq. (B2), follows from the definition of the
enthalpy in Eq. (A1), while the second, Eq. (B3), follows
from the definition of ϒðhÞ in Eq. (B1). These equations
can be reduced to quadratures:

pðhÞ ¼ p0 þ ðϵ0c2 þ p0Þ
Z

h

h0

μðh0Þdh0; ðB4Þ

ϵðhÞ ¼ −pðhÞ þ
�
ϵ0 þ

p0

c2

�
μðhÞ; ðB5Þ

where p0 ¼ pðh0Þ and ϵ0 ¼ ϵðh0Þ represent a point on the
equation of state curve, and μðhÞ is given by

μðhÞ ¼ exp

�Z
h

h0

½2þϒðh0Þ�dh0
�
: ðB6Þ

Equations (B4)–(B6) determine a causal enthalpy-based
equation of state generated by any non-negative velocity
function ϒðhÞ ≥ 0. In this study the parametric represen-
tations of the equation of state are used in the density range
above ϵ0 ¼ 5.08587 × 1013 g=cm3. Moving this matching
density to higher values would likely improve the accuracy
of the parametric fits in the high-density range. However
doing this would make the theoretically determined equa-
tion of state below ϵ0 needed to compute complete neutron-
star models less reliable. The effects of moving this
matching point were not studied in this project.
In this study two different types of parametric repre-

sentations are used. The first type, piecewise-analytic
representations, breaks the relevant domain of enthalpies
into Nparms subdomains, and then expresses ϵðh; υaÞ and
pðh; υaÞ in each subdomain as a particular analytic function
determined by the parameters. The particular causal piece-
wise analytic representations used here are described in
Sec. B 1. The second type of parametric representation used
in this study is a spectral representation that constructs
ϵðh; υaÞ and pðh; υaÞ from a generating function deter-
mined by a linear combination of spectral basis functions.
The particular causal spectral representation used here is
described in Sec. B 2.

1. Causal piecewise-analytic representations

The first step in constructing the causal piecewise-
analytic enthalpy-based representations used in this study

is to divide the enthalpy domain relevant for the high-
density portion of a neutron-star core, ½hmin; hmax�, into
Nparms subdomains with hmin ¼ h0 < h1 < … < hn−1 <
hNparms

¼ hmax. The representation used in this study makes

the subdomains uniformly spaced in log h: logðhaþ1=haÞ ¼
N−1

parms logðhmin=hmaxÞ for all 1 ≤ a ≤ Nparms.
The second step is to choose analytical functions

ϒðh; υaÞ to approximate ϒðhÞ in each subdomain. The
challenge is to find analytical functions that are reasonably
good approximations in each subdomain, and that are
simple enough to allow Eqs. (B4) and (B5) to be solved
analytically for ϵðh; υaÞ and pðh; υaÞ. Graphs in Ref. [4]
show that logϒ is more or less proportional to log h for a
collection of model neutron-star equations of state. This
fact, together with the need to have simple functions that
can be integrated analytically, leads to the following choice
for ϒðh; υaÞ [4]:

ϒðh; υaÞ ¼
υa þ 2ðha − hÞ

h
; ðB7Þ

in the subdomain ha−1 ≤ h < ha. These velocity functions
are non-negative within each subdomain so long as the
adjustable parameters are chosen to be non-nega-
tive, υa ≥ 0.
The piecewise-analytic representation of the equation of

state, ϵðh; υaÞ and pðh; υaÞ, that corresponds to theϒðh; υaÞ
given in Eq. (B7) is determined by evaluating the integrals
in Eqs. (B4)–(B6). Inserting the expression for ϒðh; υaÞ
from Eq. (B7) into these integrals gives the following
expressions for the equation of state:

pðh; υaÞ ¼ pa þ
ðϵac2 þ paÞha

λa þ 1

��
h
ha

�
λaþ1

− 1

�
; ðB8Þ

ϵðh; υaÞ ¼ −pðh; υaÞc−2 þ ðϵa þ pac−2Þ
�
h
ha

�
λa
; ðB9Þ

in the subdomain ha ≤ h < haþ1, where

λa ¼ υaþ1 þ 2haþ1: ðB10Þ

The constants pa ¼ pðha; υaÞ and ϵa ¼ ϵðha; υaÞ are deter-
mined from the recursion relations,

paþ1 ¼ pa þ
ðϵac2 þ paÞha

λa þ 1

��
haþ1

ha

�
λaþ1

− 1

�
; ðB11Þ

ϵaþ1 ¼ −paþ1c−2 þ ðϵa þ pac−2Þ
�
haþ1

ha

�
λa
: ðB12Þ

The constants p0 ¼ pðh0Þ ≥ 0 and ϵ0 ¼ ϵðh0Þ ≥ 0 are
determined from the low-density equation of state at the
matching point h ¼ h0.
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2. Causal spectral representations

Spectral methods are very efficient ways to represent
smooth functions, providing good accuracy with only a
small number of spectral basis functions. This study is
designed to test how well spectral representations are able
to represent nonsmooth functions, i.e. equations of state
with phase transitions. Causal spectral representations are
generated by a spectral expansion of the velocity function
ϒðhÞ:

ϒðhÞ ¼ exp

�XNparms

a¼1

υaΦaðhÞ
�
; ðB13Þ

where ΦaðhÞ are a suitable set of spectral basis functions
and the constants υa are the spectral coefficients. Inserting
this expression for ϒðhÞ into Eqs. (B4)–(B6) produces a
causal equation of state determined by the parameters υa.
Any equation of state constructed in this way automatically
produces a velocity function ϒðhÞ that satisfies the cau-
sality condition ϒðhÞ ≥ 0.
This study uses the very simple choice of spectral basis

functionsΦaðhÞ ¼ ½logðh=h0Þ�a, which creates a collection
of velocity functions, ϒðh; υaÞ, parametrized by υa [5]:

ϒðh; υaÞ ¼ ϒ0 exp

�XNparms

a¼1

υa

�
log

�
h
h0

��
a
�
: ðB14Þ

The constant ϒ0 ¼ ϒðh0Þ in this expression is evaluated
from the low-density portion of the equation of state at the
point h0 using Eq. (A9). Every choice of spectral param-
eters υa in Eq. (B14) determines a non-negative velocity
function, and using Eqs. (B4) and (B5) this generating
function determines a parametrized enthalpy-based causal
equation of state, ϵ ¼ ϵðh; υaÞ and p ¼ pðh; υaÞ. These
integrals cannot be done analytically; however, the inte-
grands are smooth, and they can be evaluated numerically
very accurately and efficiently using Gaussian quadrature.
If the spectral expansion in Eq. (B13) is convergent, then
every causal equation of state can be represented in this
way by including enough terms in the spectral expansion,
i.e. by choosing Nparms sufficiently large. However as this
study shows, the spectral representations of equations of
state with large phase transitions are not convergent for
representations based on the particular spectral expansion
in Eq. (B14).
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